Uncertainty modelling and conditioning with convex imprecise previsions

نویسندگان

  • Renato Pelessoni
  • Paolo Vicig
چکیده

Two classes of imprecise previsions, which we termed convex and centered convex previsions, are studied in this paper in a framework close to Walley’s and Williams’ theory of imprecise previsions. We show that convex previsions are related with a concept of convex natural estension, which is useful in correcting a large class of inconsistent imprecise probability assessments, characterised by a condition of avoiding unbounded sure loss. Convexity further provides a conceptual framework for some uncertainty models and devices, like unnormalised supremum preserving functions. Centered convex previsions are intermediate between coherent previsions and previsions avoiding sure loss, and their not requiring positive homogeneity is a relevant feature for potential applications. We discuss in particular their usage in (financial) risk measurement. In a final part we introduce convex imprecise previsions in a conditional environment and investigate their basic properties, showing how several of the preceding notions may be extended and the way the generalised Bayes rule applies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex Imprecise Previsions: Basic Issues and Applications

In this paper we study two classes of imprecise previsions, which we termed convex and centered convex previsions, in the framework of Walley’s theory of imprecise previsions. We show that convex previsions are related with a concept of convex natural estension, which is useful in correcting a large class of inconsistent imprecise probability assessments. This class is characterised by a condit...

متن کامل

Convex Imprecise Previsions for Risk Measurement

In this paper we introduce convex imprecise previsions as a special class of imprecise previsions, showing that they retain or generalise most of the relevant properties of coherent imprecise previsions but are not necessarily positively homogeneous. The broader class of weakly convex imprecise previsions is also studied and its fundamental properties are demonstrated. The notions of weak conve...

متن کامل

Envelope Theorems and Dilation with Convex Conditional Previsions

This paper focuses on establishing envelope theorems for convex conditional lower previsions, a recently investigated class of imprecise previsions larger than coherent imprecise conditional previsions. It is in particular discussed how the various theorems can be employed in assessing convex previsions. We also consider the problem of dilation for these kinds of imprecise previsions, and point...

متن کامل

On Coherent Variability Measures and Conditioning

Coherent upper and lower previsions are becoming more and more popular as a mathematical model for robust valuations under uncertainty. Likewise, the mathematically equivalent class of coherent risk measures is attracting a lot attention in mathematical finance. In this paper, we show that a misinterpretation of upper previsions demands a closer examination of the basis of the theory of impreci...

متن کامل

Representation theorems for partially exchangeable random variables

We provide representation theorems for both finite and countable sequences of finite-valued random variables that are considered to be partially exchangeable. In their most general form, our results are presented in terms of sets of desirable gambles, a very general framework for modelling uncertainty. Its key advantages are that it allows for imprecision, is more expressive than almost every o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Approx. Reasoning

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2005